A Note on Minimal Boolean Formula Size of One-Dimensional Cellular Automata

EVANGELOS GEORGIADIS*

Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A

Received 15 January 2007; Accepted 18 January 2007

In this note, we disprove 44 claims in [4] on minimal Boolean formula size of one-dimensional two-state nearest neighbor cellular automata as well as set a new upper bound.

Key words: Cellular Automata, Boolean formula minimization, Boolean functions

In [4] Wolfram asserts to have found minimal Boolean formulas for (what he denotes) rules of one-dimensional, two-state, nearest neighbor cellular automata (CA) or simply *elementary rules*. These formulas are minimal in the sense that they "use the minimum possible number of operators" over basis $\Omega_1 = \{0,1,\neg,\wedge,\vee,\oplus\}$.

Provided that elementary rules can be interpreted as 3-input Boolean functions and visualized via their respective truth table representation, we would like to draw attention to result (a) of [2], which states that the maximal formula size for 3-input Boolean functions over basis Ω_1 is 5. This result clearly disproves the minimalistic nature of Wolfram's 8 Boolean formulas in [4] of size 6 and sets a new upper bound on formula size.

We enumerate all 256 3-input Boolean functions via their respective truth table representation and their output column Boolean vector $\hat{\alpha}$ where $\alpha_i \in \{0,1\}$. Each of the 256 functions represents one permutation of eight binary bits in the output column Boolean vector

$$\hat{\alpha} = [\alpha_0 \alpha_1 \cdots \alpha_7].$$

^{*} email: egeorg@mit.edu

We can now specify all 256 Boolean functions with a decimal number $N = \{0, 1, 2, \dots, 255\}.$

$$N = \sum_{i=0}^{7} \alpha_i 2^{7-i}$$

For sake of completeness, we provide an example of how Wolfram's enumeration scheme works using CA rule 110.

p	q	r	f(p,q,r)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	0

$$N = 0(2^7) + 1(2^6) + 1(2^5) + 0(2^4) + 1(2^3) + 1(2^2) + 1(2^1) + 0(2^0) = 110.$$

A Boolean formula, ϕ , is an expression constructed from propositional variables with logical connectives. Properties are outlined next.

Symbol	Meaning	Size
	Not	1
\wedge	And	1
\vee	Or	1
\oplus	Xor	1
1	True	0
0	False	0

Additionally, we define the size of a given Boolean formula ϕ , or simply $\operatorname{size}(\phi)$, as the number of occurrences of logical connectives. Note that, $\operatorname{size}(\operatorname{True}) = \operatorname{size}(\operatorname{False}) = 0$.

A Boolean formula is *minimal* if and only if for every formula ψ , shorter in size than ϕ , there exists an assignment of the variables such that ϕ and ψ evaluate to different values.

The following elementary rules or Boolean functions are represented by minimal Boolean formulas:

rule	minimal Boolean formula	rule	minimal Boolean formula
2	$r \land \neg(p \lor q)$	133	$\neg (p \oplus r) \land (q \lor \neg p)$
16	$p \oplus (p \land (r \lor q))$	138	$r \land (\neg p \lor q)$
18	$\neg q \land (p \oplus r)$	145	$\neg((r \land \neg p) \lor (q \oplus r))$
22	$p \oplus ((p \land q) \lor (q \oplus r))$	151	$(p \land q) \oplus \neg (r \land (q \lor p))$
25	$\neg((p \land q) \lor (q \oplus r))$	155	$\neg ((q \oplus r) \land (q \lor p))$
33	$\neg (q \lor (p \oplus r))$	157	$\neg \left((p \lor r) \land (q \oplus r) \right)$
37	$\neg ((q \land r) \lor (p \oplus r))$	167	$\neg ((p \oplus r) \land (q \lor p)$
61	$\neg (p \lor r) \lor (p \oplus q)$	181	$\neg ((p \oplus r) \land (r \lor q))$
67	$\neg((r \land p) \lor (p \oplus q))$	183	$\neg (q \land (p \oplus r))$
72	q∧(p⊕r)	184	$p \oplus (q \land (p \oplus r))$
91	$r \oplus (p \lor \neg (r \lor q))$	188	$(r \land q) \lor (p \oplus q)$
101	$r \oplus (\neg p \lor q)$	191	$\neg (q \land p) \lor r$
103	$\neg (r \lor p) \lor (q \oplus r)$	199	$\neg ((p \oplus q) \land (r \lor p))$
104	$(p \land q) \oplus (r \land (q \lor p))$	207	$\neg p \lor q$
107	$(p \land q) \oplus (r \lor \neg (q \lor p))$	211	$\neg ((p \oplus q) \land (r \lor q))$
109	$r \oplus \neg ((r \lor p) \land (p \oplus q))$	218	$(r \land q) \lor (p \oplus r)$
110	$(\neg p \land r) \lor (q \oplus r)$	222	q∨(p⊕r)
121	$r \oplus \neg ((r \lor q) \land (p \oplus q))$	223	$\neg (p \land r) \lor q$
122	$(\neg q \land r) \lor (p \oplus r)$	226	$r \oplus (q \land (p \oplus r))$
123	$\neg q \lor (p \oplus r)$	230	$(p \land q) \lor (q \oplus r)$
124	$(\neg r \land q) \lor (p \oplus q)$	233	$r \oplus \neg ((r \land q) \lor (p \oplus q))$
131	$\neg(p \oplus q) \land (r \lor \neg p)$	247	$\neg (r \land q) \lor p$

Remark 0.1 The formulas provided by Wolfram [4] for these rules are not minimal. Moreover for 8 of these cannot be minimal even by simple inspection since minimal formula sizes for 3-input Boolean functions over this basis never exceeds 5.

Remark 0.2 These formulas could be used for an efficient implementation of an elementary CA simulator. For more information, we refer the interested reader to [1].

ACKNOWLEDGMENT

The author is very grateful to Michael Sipser of M.I.T. as well as Peter Gacs, Norman Margolus, Jeffrey Shallit, Klaus Sutner and the referees for helpful comments.

REFERENCES

- F. Bagnoli, P. Palmerini and R. Rechtman, Mapping criticality into self criticality, Phys. Rev. E. 55, 3970, 1997.
- [2] E. Georgiadis, I. Wegener, On maximal formula size of minimal boolean formulas, Unpublished, 2006.
- [3] I. Wegener, The Complexity of Boolean Functions, John Wiley & Sons, 1987.
- [4] S. Wolfram, A New Kind of Science, Wolfram Media, Inc., pp. 884-885, 2002.